Mice Lacking beta2-Integrin Function Remain Glucose Tolerant in Spite of Insulin Resistance, Neutrophil Infiltration and Inflammation
نویسندگان
چکیده
Beta2-integrins are important in leukocyte trafficking and function, and are regulated through the binding of cytoplasmic proteins, such as kindlin-3, to their intracellular domain. Here, we investigate the involvement of beta2-integrins in the regulation of metabolic disease using mice where the kindlin-3 binding site in the beta2-integrin cytoplasmic tail has been mutated (TTT/AAA-beta2-integrin knock-in (KI) mice), leading to expressed but dysfunctional beta2-integrins and significant neutrophilia in vivo. Beta2-integrin KI mice fed on a high fat diet showed normal weight gain, and normal accumulation of macrophages and lymphocytes in white adipose tissue (WAT) and liver, but increased neutrophil numbers especially in WAT. In addition, beta2-integrin KI mice fed on a high fat diet showed significantly increased peripheral insulin resistance in response to high-fat feeding. However, this was associated with improved glucose disposal following glucose load. Interestingly, beta2-integrin KI neutrophils produced more elastase in vitro, in response to stimulation. Beta2-integrin KI mice displayed variability of tissue inflammatory status, with liver and WAT exhibiting little or no difference in inflammation compared to high fat fed controls, whereas skeletal muscle demonstrated a raised inflammatory profile in association with higher elastase levels and diminished signalling through the IRS1-PKB pathway. In conclusion, although expression of dysfunctional beta2-integrins increased neutrophil production and infiltration into tissue, skeletal muscle was the most affected tissue exhibiting evidence of higher neutrophil activity and insulin resistance. Thus, beta2-integrins modulate glucose homeostasis during high fat feeding predominantly through actions on skeletal muscle to affect metabolic phenotype in vivo.
منابع مشابه
ICAM-1 and beta2 integrin deficiency impairs fat oxidation and insulin metabolism during fasting.
Intercellular adhesion molecule 1 (ICAM-1) and beta2 integrins play critical roles in immune responses. ICAM-1 may also participate in regulation of energy balance because ICAM-1-deficient mice become obese on a high-fat diet. We show that mice deficient in these adhesion receptors are unable to respond to fasting by up-regulation of fatty acid oxidation. Normal mice, when fasted, exhibit reduc...
متن کاملFyn Deficiency Promotes a Preferential Increase in Subcutaneous Adipose Tissue Mass and Decreased Visceral Adipose Tissue Inflammation
Previous studies have demonstrated that Fyn knockout (FynKO) mice on a standard chow diet display increased glucose clearance and whole-body insulin sensitivity associated with decreased adiposity resulting from increased fatty acid use and energy expenditure. Surprisingly, however, despite a similar extent of adipose tissue (AT) mass accumulation on a high-fat diet, the FynKO mice remained ful...
متن کاملInduction of Cytosolic Phospholipase A2a Is Required for Adipose Neutrophil Infiltration and Hepatic Insulin Resistance Early in the Course of High-Fat Feeding
In established obesity, inflammation and macrophage recruitment likely contribute to the development of insulin resistance. In the current study, we set out to explore whether adipose tissue infiltration by neutrophils that occurs early (3 days) after initiating a high-fat diet (HFD) could contribute to the early occurrence of hepatic insulin resistance and to determine the role of cytosolic ph...
متن کاملInduction of Cytosolic Phospholipase A2α Is Required for Adipose Neutrophil Infiltration and Hepatic Insulin Resistance Early in the Course of High-Fat Feeding
In established obesity, inflammation and macrophage recruitment likely contribute to the development of insulin resistance. In the current study, we set out to explore whether adipose tissue infiltration by neutrophils that occurs early (3 days) after initiating a high-fat diet (HFD) could contribute to the early occurrence of hepatic insulin resistance and to determine the role of cytosolic ph...
متن کاملp38γ and p38δ reprogram liver metabolism by modulating neutrophil infiltration.
Non-alcoholic fatty liver disease (NAFLD) is a major health problem and the main cause of liver disease in Western countries. Although NAFLD is strongly associated with obesity and insulin resistance, its pathogenesis remains poorly understood. The disease begins with an excessive accumulation of triglycerides in the liver, which stimulates an inflammatory response. Alternative p38 mitogen-acti...
متن کامل